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High-Reynolds-number turbulence in small
apparatus: grid turbulence in cryogenic liquids
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Liquid helium at 4.2 K has a viscosity that is about 40 times smaller than that of water
at room temperature, and about 600 times smaller than that of air at atmospheric
pressure. It is therefore a convenient fluid for generating in a table-top apparatus
turbulent flows at high Reynolds numbers that require large air and water facilities.
Here, we produce turbulence behind towed grids in a liquid helium chamber that is
5 cm2 in cross-section at mesh Reynolds numbers of up to 7× 105. Liquid nitrogen is
intermediate in its viscosity as well as refrigeration demands, and so we also exploit
its use to generate towed-grid turbulence up to mesh Reynolds number of about
2 × 104. In both instances, we map two-dimensional fields of velocity vectors using
particle image velocimetry, and compare the data with those in water and air.

1. Introduction
Fluid turbulence is essentially a high-Reynolds-number phenomenon. There has

therefore been a push towards attaining increasingly higher Reynolds numbers, es-
pecially for determining the applicable scaling laws. High Reynolds numbers can be
generated by using either large flow facilities or fluids of small viscosity. Cryogenic
helium has the smallest viscosity of any known substance; for example, in the liquid
state at 4.2 K, its kinematic viscosity ν ≈ 2.5× 10−4 cm2 s−1. While the attractions of
this low viscosity have been appreciated amply (see Donnelly & Sreenivasan 1998
for a summary), cryogenic technology has not yet caught on in isothermal turbulence
studies. One reason is the difficulty in making velocity measurements with adequate
resolution: the smallness of the apparatus, which is otherwise of great benefit, implies
smaller turbulent scales for a given Reynolds number. For the helium technology
to become competitive, one has to show, in particular, that the standard turbulence
measurements that are now possible in water and air are equally feasible in helium.
While there already exist single-point measurements of temperature and velocity in
helium turbulence (e.g. Wu 1991; Castaing, Chabaud & Hebral 1992; Tabeling et al.
1996; Stalp, Niemela & Donnelly 2000), no attempts have yet been made to obtain
planar maps of the velocity field using particle image velocimetry (PIV). Making such
measurements is our goal here.

First, we use liquid helium to generate in a table-top apparatus, whose working
section is 5 cm square, well-behaved turbulence behind towed grids at mesh Reynolds
numbers of up to 7 × 105. For comparison, the towed-grid water measurements of
Dickey & Mellor (1980) were made in a tank of cross-sectional area about 174
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times larger, yet the mesh Reynolds number was about 15 times smaller than the
largest attained here. Second, we make velocity measurements in plane sections of
this flow using PIV, and demonstrate that detailed characterization of high-Reynolds-
number turbulence in a table-top apparatus is eminently feasible. (The limitations
that still exist are not intrinsic.) Third, while cryogenic helium offers the best means
for attaining the highest possible Reynolds numbers, it is also demanding in terms
of refrigeration. A fluid intermediate in its viscosity as well as refrigeration needs is
liquid nitrogen. It is an easier fluid for PIV measurements because finding suitable
tracer particles is relatively easy. Using the same apparatus as before, we perform
identical measurements in liquid nitrogen and compare the results to those in liquid
helium. The highest mesh Reynolds number is of the order of 2 × 104, about half
Dickey & Mellor’s.

We chose grid turbulence for two reasons, quite aside from the intrinsic interest in
the flow. First, nearly homogeneous and isotropic turbulence behind grids has been
studied extensively (e.g. Batchelor & Townsend 1948; Comte-Bellot & Corrsin 1966;
Gad-el-Hak & Corrsin 1974; Sreenivasan et al. 1980; Mohamed & LaRue 1990), and
its analogue has been simulated numerically in a periodic box (e.g. Chen et al. 1993;
Jimenez et al. 1993; Vincent & Meneguzzi 1994). It is thus possible to make accurate
checks on the present results. Second, if the PIV technique can be made to work in
the grid experiment, for which the mean velocity is zero and fluctuations in all three
directions are comparable, its success is likely to be assured in most other helium
flows as well.

2. Experimental details
Only a brief description is presented here. More details are given in White (2001).

2.1. The cryostat

A cut-away drawing of the apparatus is shown in figure 1. Its footprint is about
30 cm2. The inner chamber, 5 cm2 in cross-section and 25 cm in height, contains liquid
helium. A port at the top of the inner chamber connects it to a helium bath above, and
prevents the formation of a free surface. Surrounding the inner chamber is a radiation
shield maintained at liquid nitrogen temperature (77 K), which itself is isolated from
an external chamber at ambient temperature. The spaces between the chambers are
evacuated to ≈ 1 µTorr to diminish heat loss. Each chamber is fitted for optical access
with a set of four aligned windows centred at the midpoint of the inner chamber.

Turbulence is generated by pulling a biplane square grid of solidity 0.44 through
the stagnant column of liquid helium at 4.2 K. Three grids with mesh sizes of 2.5, 3.33
and 7.15 mm are used. The grids are towed with a linear servo actuator capable of
accelerations up to 15g and velocities up to 8 m s−1. Grid speeds of 50–200 cm s−1 are
generated using start-up accelerations of 10–50 m s−2. The towing speeds are constant
over a sizeable part of the traverse – for example, over 80% of the channel height for
the acceleration of 20 m s−2.

2.2. Tracer particles

A challenging aspect of PIV measurements in liquid helium is that its low dynamic
viscosity and density encourage most particles to settle rather rapidly. For instance, a
1 µm solid glass particle settles five times faster in liquid helium than in air at room
temperature. This tendency and the smallness of scales demand the use of the smallest
particles possible, but the particles cannot be too small because the scattered light then
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Figure 1. Cut-away schematic of the experimental apparatus.

becomes too weak. After considerable study (White 2001), we have chosen hollow
glass spheres. The current technology can produce sizes of the order of 1µm. The
nominal density of these particles is about 0.13 g cm−3, which compares favourably to
that of liquid helium of 0.125 g cm−3 at 4.2 K.

In reality, the control in making hollow glass spheres is poor, and so their diameters
range from 1 to 10 µm and their densities from 0.13 to 0.5 g cm−3. In our measure-
ments, the heavier spheres settle to the bottom of the tank quickly and the smaller
ones, comparable to the smallest turbulent length scales generated in the flow, stay
effectively suspended. These are the particles used for PIV. Their estimated settling
velocities confirm that the Stokes and Froude numbers are less than 0.07 during the
measurement period, so it is reasonable to assume that they track the fluid motion
adequately (see, for example, Maxey & Riley 1983; Mei, Adrian & Hanratty 1991).

The particle selection for liquid nitrogen is almost trivial by comparison. We use
solid latex spheres 3.2 µm in diameter. Their Stokes and Froude numbers are an order
of magnitude smaller than those of the tracer particles used in liquid helium.

2.3. Particle image velocimetry

The particles are illuminated for 10 ns by light sheets from a red laser (wavelength
640 nm) and a green laser (532 nm) superimposed in space but separated in time
by a well-regulated amount (of the order of a few ms). The light sheet thickness
is approximately 500 µm in the measurement area. A colour CCD camera with
1524 × 1012 pixels records the laser light scattered normal to the plane of the light
sheet. Each pixel corresponds to 9µm in real space, providing a flow image over
14 mm× 9 mm approximately.
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Figure 2. Typical PIV image (a) and the corresponding vector plot (b) taken in helium at a
non-dimensional time tM = 40 and a mesh Reynolds number RM = 3.3× 104. (Both tM and RM are
defined in § 4.) (c, d ). As (a, b) taken in nitrogen at tM = 850 and RM = 9.1× 103.

From the imaged particle positions, we obtain the velocity field by the cross-
correlation technique. The technique calculates the correlation between the red and
green intensity fields over an interrogation area and obtains an average velocity vector
for that area. Here, the interrogation areas are 64 pixels on each side and have an
overlap of 32 pixels. By repeating the analysis over all possible interrogation areas,
we obtain 45 velocity vectors in the transverse direction y parallel to the grid, and
29 in the ‘streamwise’ direction x (vertically down). A typical PIV image and its
corresponding vector plot are shown for helium measurements in figures 2(a) and
2(b), respectively. Nitrogen data in figures 2(c) and 2(d ) are in general of better
quality.

3. Data validation
The cross-correlation technique requires a particle population of the order 10 to

be present in an interrogation area which, in general, should not be larger than
the smallest scale in the flow. Since the particle loading has to be small, the spatial
resolution of the PIV system is vitally dependent on the size of the particle tracers.
The magnitude and direction of the average velocity over the interrogation area are
given by the position of the peak in the correlation plane. If the interrogation area is
larger than the smallest scales of motion the existence of velocity gradients within the
area produces a spatial spread of the correlation peak when the gradients are weak
and ‘false vectors’ when the gradients are large. These false vectors are produced by
secondary peaks in the correlation function.

For the conditions chosen, the interrogation area varies between 50 and 15 Kol-
mogorov scales for helium and 15 and 3 Kolmogorov scales for nitrogen. This produces
a signal with a non-trivial fraction of false vectors (of the order 5–30% for helium
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Figure 3. A typical cross-correlation function for helium data, before correction (•) and after
correction (◦) as described in the text. RM = 2× 105, tM = 540.

and 5–15% for nitrogen), and are the major source of noise. The influence of this
noise has been mitigated by employing various available techniques as discussed in
White (2001). A further source of noise due to the poor resolution of the small scales
requires a different correction, as described below.

The noise and signal are uncorrelated, so a typical longitudinal correlation function
C(r) ≡ 〈(u(x)u(x+ r))2〉/〈(u(x)2)〉, where u and r are the velocity component and the
separation distance in the direction x, contains at the origin a ‘delta function’ due to
the noise (closed symbols in figure 3). We correct for this effect by using two methods.
Both result in the effective removal of this spurious peak and the normalization of
the remainder of the correlation function to restore unity value at the origin (open
symbols in figure 3). In the first method, we determine the normalization factor, κ,
by fitting the correlation function away from the origin to the classical Kolmogorov
scaling relation (e.g. Frisch 1995) and extrapolating it to the origin. Neglecting small-
scale intermittency effects, the fit is given by

κ− C(r) =
Ckr

2/3

2u′2
. (3.1)

Here, u′ is the root-mean-square value of the fluctuating velocity u, the constant
Ck (≈ 2, see Sreenivasan 1995) subsumes the Kolmogorov constant and the energy
dissipation; κ would, of course, be unity for noise-free data. The second method
determines κ from the relation (Stolovitzky, Sreenivasan & Juneja 1993)

κ− C(r) =
1

2u′2
γr2

(1 + ξr2)0.65
, (3.2)

where γ and ξ can be treated as unknown parameters to be determined from a
three-parameter least-square curve fit to the data. Expression (3.2) takes account of
intermittency and fits the correlation function data in both inertial and dissipation
ranges. The two sets of estimates of κ agree to within 10% for all measured times in
the decay.

4. Principal results
We acquire data between 40tM and 2000tM , where tM is the mesh time = tU/M,

M being the centre-to-centre spacing of the rods of the grid (‘mesh size’) and U the
towing velocity. For each pull-through motion of the grid, only one image is acquired
at a fixed time ∆t after the grid has moved past the imaged area. Helium data are
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Figure 4. Temporal decay of the mean-squared-velocity fluctuation in the direction of motion of
the grid at four Reynolds numbers for helium (a) and two mesh Reynolds numbers for nitrogen (b).
The lines through the data are the least-square power-law fits. In (a) ◦,—, RM = 3.3× 104; �,−−,
RM = 6.6 × 104; 4, · · ·, RM = 1.32 × 105; O, - · -, RM = 2.0 × 105. In (b) �,—, RM = 9.1 × 104;
�,−−, RM = 1.82× 104. The Reynolds numbers remain large to the end of the range (so no ‘final
period of decay’ is possible), and it is estimated that the boundary layer effects are negligible except
perhaps for the last symbol for the nitrogen data.

acquired for six mesh Reynolds numbers RM ≡ UM/ν of 3.3×104, 5.0×104, 6.6×104,
1.3× 105, 2.0× 105, and 7.1× 105. Nitrogen data are acquired for two mesh Reynolds
numbers, 9.1 × 103 and 1.8 × 104. The Reynolds number is varied by changing the
mesh size (as noted in § 2.1) and the towing speed of the grid. For each RM and each
∆t we obtain an ensemble of images. For brevity, we present helium results for the
grid of mesh size 3.33 mm, used to generate all but the smallest and the largest RM .

For each image, statistical quantities such as correlations are ensemble averaged
over columns for the streamwise velocity and rows for the transverse. The mean-
square velocities in the streamwise and transverse directions differ by only about 5%
over the measurement conditions, suggesting that turbulence is essentially isotropic
on the large scale. (In contrast, most wind tunnel data possess higher anisotropy.) We
present results only for the transverse component partly because the number of grid
points in that direction is larger and so the statistics are better, and partly because
the presence of a very small streamwise average velocity (of the order of 0.005U for
tM > 100) in each image complicates the process of ensemble averaging for u′.

Figure 4 shows the time decay of the mean-square turbulent transverse velocity
normalized by U2. The data are fitted to the power law, αt−βM . The values of α and
β for the helium data, are, respectively, 0.28 and 1.21 for RM = 3.3 × 104, and 0.21
and 1.22 for RM = 6.6 × 104, 0.16 and 1.16 for RM = 1.32 × 104, and 0.22 and 1.21
for RM = 2.00 × 105. For the nitrogen data they are, respectively, 0.36 and 1.22 for
RM = 9.1 × 103, and 0.23 and 1.15 for RM = 1.8 × 104. The statistical uncertainty
in β is less than ±0.1. The differences among the three data sets are due more to
differences in initial conditions. Because we have a sizeable range of decay times, no
virtual origin has been used (see Mohamed & LaRue 1990 for a discussion of this
point).

The exponent for the first few hundred mesh distances has been measured by
Comte-Bellot & Corrsin (1966) to be about 1.2, with α values ranging from 0.02
to 0.1 depending on initial conditions (see, also, Sreenivasan et al. 1980). Since α is
a measure of the initial turbulent energy, it is plausible that the higher α for the
present measurements is due to the large initial accelerations of the grid. This view
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Figure 5. Temporal development of the integral length scale L for six mesh Reynolds numbers. ◦,
RM = 3.3× 104; �, RM = 6.6× 104; 4, RM = 1.32× 105; O: RM = 2.00× 105; �: RM = 9.1× 104;
�, RM = 1.82× 104. The solid line is the best fit for the wind tunnel data (Sreenivasan et al. 1980).
When translated to the present case, that fit is L/M = 0.13(tU/M)0.4.

seems consistent with the fact that active grids with dynamically accelerating and
decelerating elements in them have larger values of α (Mydlarski & Warhaft 1996).

The ‘longitudinal’ integral length scale L is obtained (obviously, without Taylor’s
hypothesis) by evaluating the area under the (normalized) correlation function of the
transverse velocity component v at any point with v at another point separated by r in
the transverse direction y. For separation distances r greater than about half the image
size, the correlation function, generated by performing ensemble averages along rows
in PIV images, does not converge well because of insufficient data. So, the measured
correlation function is fitted to the inertial-range power-law for r smaller than half
the image size and extrapolated to the full span of the measurement window before
performing the integral. The results are shown in figure 5 and compared with earlier
wind tunnel data (Sreenivasan et al. 1980) by converting space in those experiments
to time in ours through the flow velocity. Except for small times, say tM < 50, the
agreement among the seven sets of data and with the previous best fit is within
experimental uncertainty, which is in the range of 0.25–0.5 mm for L.

The Taylor microscale λ, defined through the relation ε = 15ν(v′2/λ2) where ε is the
dissipation rate per unit mass, is obtained by two independent methods. In the first
method, ε is obtained from the energy decay in figure 4, ε = −(3/2)(dv′2/dt), while in
the second, it is obtained from Kolmogorov’s relation (see e.g. Frisch 1995) for second-
order structure function S2, namely S2(r) = Ck(rε)

2/3, where S2(r) ≡ 〈(v(y+ r)− v(y))2〉
and every other quantity but ε is known. The second-order structure function is
computed for each ∆t and fitted to the 2/3-power in r. The agreement between the λ
values calculated by two independent methods, shown in figure 6, is reassuring. The
Taylor microscale Reynolds number Rλ = v′λ/ν can now be computed to be 130, 180,
195, 260, 310 and 575 for helium, and 80 and 120 for nitrogen.

The quantity εL/v′3 is a measure of the ratio of the time scale for the energy transfer
to that of the energy-containing eddies, and is believed to be a constant of the order
unity, independent of the Reynolds number for large enough Reynolds numbers (e.g.
Frisch 1995). Various experimental data for grid turbulence, collected by Sreenivasan
(1984), show that εL/v′3 asymptotes to a constant for Rλ > 70; see also Stalp (1998)
for data in helium II. Direct numerical simulations of isotropic turbulence show a
similar behaviour (Sreenivasan 1998). The present data are plotted in figure 7. The
open symbols and × use the measured value of L. The large scatter of 20–40% is
due mostly to the uncertainty in L. This is clear because when L from the fit shown
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Figure 6. Temporal development of the Taylor microscale λ obtained by two different methods,
for the four mesh Reynolds numbers in liquid helium; symbols as in figure 4(a). The lines indicate
λ values obtained from the energy decay in figure 4. The symbols are λ values obtained from the
second-order structure function. The agreement between the two results improves with increasing
Reynolds number.
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Figure 7. εL/v′3 as a function of Rλ. Open symbols use the measured integral scale and filled
symbols use the fit shown in figure 5. Symbols are: ◦,•, RM = 3.3× 104; �,�, RM = 6.6× 104; 4,N:
RM = 1.32× 105; O,H, RM = 2.0× 105; �,�, RM = 9.1× 104; �,�, RM = 1.82× 104.

in figure 5 is used instead, a significant reduction in scatter occurs (filled symbols and
�). It appears that εL/v′3 is indeed a constant in these measurements and has the
average value of about 0.5. We have discussed elsewhere (Sreenivasan 1998, White
2001) that the asymptotic value of εL/v′3 depends on initial conditions (or the nature
of ‘forcing’).

5. Conclusions
The present work is part of a programme aimed at exploiting the merits of

cryogenic helium for turbulence studies. Here, we have shown that detailed spatial
measurements of turbulence can be made in cryogenic helium. With non-trivial
modifications required in scaling up of the facility as well as optics, the Reynolds
numbers can be exceeded by a factor 10 and the accuracy of the technique improved.
This will undoubtedly enhance the ability to measure turbulence at very high Reynolds
numbers in small apparatus, thereby making major advances possible in a single-
investigator laboratory. It should also be stressed that the agreement of the helium
data with those in other flows is a strong evidence that helium turbulence indeed
obeys the Navier–Stokes equations (a question that has sometimes been raised in the
past).
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